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ARTIFICIAL INTELLIGENCE SOLUTION TO ELECTRICITY
PRICE FORECASTING PROBLEM

Pavlos S. Georgilakis & Department of Production Engineering and Management,
Technical University of Crete, University Campus, Chania, Greece

& The market-clearing prices in deregulated electricity markets are volatile. Good market-clearing
price forecasting will help producers and consumers to prepare their corresponding bidding strate-
gies so as to maximize their profits. Market-clearing price prediction is a difficult task since bidding
strategies used by market participants are complicated and various uncertainties interact in an
intricate way. This article proposes the use of two artificial neural networks: the first to predict
the day-ahead load and the second to forecast the day-ahead market-clearing prices. The method-
ology is applied to the California power market. After determining the optimal artificial neural net-
work architecture with the minimum mean absolute percentage error on the test set, this architecture
is used for price forecasting in periods with price spikes, for price forecasting for weekends, and for
week-ahead MCP forecasting during the four seasons of the year. The forecasting accuracy of the
artificial neural network model is compared with the accuracy of the persistence method and the
results prove the efficiency and practicality of the proposed technique.

Deregulation has a great impact on the electric power industry now-
adays (Georgilakis et al. 2001). In a deregulated environment, the intersec-
tion of the supply and demand curves represents the market-clearing price
(MCP), i.e., the market equilibrium (Kirschen and Strbac 2004).

Producers and consumers rely on price forecast information to prepare
their corresponding bidding strategies. A producer with low capability of
altering MCPs (price-taker producer) needs day-ahead price forecasts to
optimally self-schedule and to derive his bidding strategy in the pool
(Arroyo and Conejo 2000; Chan 2000).

Retailers and large consumers need day-ahead MCPs for the same rea-
sons as producers. If a consumer is to buy on the spot market, it is essential
that he can predict as accurately as possible the evolution of MCPs over the
time horizon used to self-schedule (Kirschen 2003).
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The time framework to forecast the day-ahead MCPs in most markets is
as follows (Conejo et al. 2005b). The MCPs for day d are required on day
d-1, typically at hour hb (around 10 A.M.). On the other hand, data concern-
ing results for day d-1 are available on day d-2 at hour hc (around 12 P.M.).
Therefore, the actual forecasting of market prices for day d can take place
between hour hc of day d-2 and hour hb of day d-1. Therefore, to forecast
prices for day d, price data up to hour 24 of day d-1 are considered known.

MCP prediction is a difficult task (Schweppe et al. 1988) since bidding
strategies used by market participants are complicated and various uncer-
tainties interact in an intricate way. The complexity of MCP forecasting is
also due to the number of influential factors and the lack of information
on some of these factors. Since the MCP derives from the market equilib-
rium, it is influenced by both load and generation factors (Bunn 2000;
Breipohl 2002; Kirschen and Strbac 2004). On the load side, all the tem-
poral, meteorological, economic, and special factors that are used in load
forecasting should also be taken into account when forecasting prices.
The generation side is considerably more troublesome because some
events occur at random (e.g., failures leading to withdrawal of capacity
and price spikes) and others are not always publicly announced in advance
(e.g., planned outages for maintenance). In addition, when the locational
marginal price is needed, transmission congestion can have a sudden and-
hard-to-predict effect. Finally, when competition is less perfect, some gen-
erators have the ability to influence prices to suit their own objectives. From
this, it is concluded that MCPs are volatile and MCP prediction is a difficult
task since bidding strategies used by market participants are complicated
and various uncertainties interact in an intricate way.

In most electricity markets the series of prices presents the following
features: 1) high frequency, 2) non-constant mean and variance, 3) daily
and weekly seasonality, 4) calendar effect on weekends and holidays, 5)
high volatility, and 6) presence of outliers.

Many attempts have been made to forecast electricity prices. Reported
techniques include time series models, wavelet transform, and artificial
neural networks.

Time series models are based on time series analysis. Linear regression
time series models are not appropriate for MCP forecasting due to the pres-
ence of serial correlation in the errors (Conejo et al. 2005a). Therefore, it is
necessary to use time series models that can handle correlated errors, such
as ARIMA (Contreras et al. 2003; Conejo et al. 2005b), dynamic regression
(Nogales et al. 2002), and transfer function models (Nogales et al. 2002;
Conejo et al. 2005a). ARIMA relates current prices to past prices and cur-
rent errors to previous errors. Dynamic regression relates current and past
prices and demands. Transfer function relates current prices to past prices,
demands, and errors.

708 P. S. Georgilakis
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The wavelet transform (Yao and Song 2000; Kim et al. 2002; Conejo
et al. 2005b) converts an MCP series in a set (typically three to six) of consti-
tutive series. These series present a better behavior (more stable variance
and no outliers) than the original price series, and therefore, they can
be predicted more accurately. The reason for the better behavior of the
constitutive series is the filtering effect of the wavelet transform. In brief,
the wavelet transform is used to decompose the ill-behaved price series into
a set of better-behaved constitutive series. The future behavior of all the
constitutive series is then predicted and the reverse wavelet transform is
used to generate MCP prediction.

The artificial neural network (ANN) method, because of its ability to
approximate any nonlinear function, is very promising in forecasting
MCP time series. ANNs have been applied to forecasting prices in the
England-Wales pool (Wang and Ramsay 1998), the Australian market
(Szkuta et al. 1999), the California market (Shahidehpour et al. 2002;
Yamin et al. 2004), the PJM Interconnection (Hong and Hsiao 2002),
and the New England ISO (Zhang et al. 2003).

This article proposes the use of two artificial neural networks: the first to
predict the day-ahead load and the second to forecast the day-ahead market-
clearing prices. The methodology is applied to the California power market.
After determining the optimal artificial neural network architecture with
the minimum mean absolute percentage error on the test set, this architec-
ture is used for price forecasting in periods with price spikes, for price fore-
casting for weekends, and for week-ahead MCP forecasting during the four
seasons of the year. The forecasting accuracy of the artificial neural network
model is compared with the accuracy of the persistence method and the
results prove the efficiency and practicality of the proposed technique.

FORECASTING METHODOLOGY

Artificial Neural Network Model

ANN is a computer information processing system that is capable of
sufficiently representing any nonlinear functions (Haykin 1999). The
techniques based on ANN are especially effective in the solution of high
complexity problems for which a traditional mathematical model is diffi-
cult to build, where the nature of the input-output relationship is neither
well defined nor easily computable.

The most popular ANN architecture is the three-layer feed-forward sys-
tem trained with a back-propagation algorithm. The success of this
approach dwell in the fact that it can learn the relationship between input
and output, by training the network offline using historical data derived
from the system, with a supervised learning technique.

AI for Electricity Price Forecasting 709
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In the case of MCP forecasting, there is no simple relationship among
the parameters involved in the determination of the MCP. ANNs, due to
their highly nonlinear capabilities and universal approximation properties,
are proposed in this article for MCP forecasting. At the training stage, the
proper training set is identified and the proper ANN architecture (e.g.,
number and type of neurons and layers) is selected. The adaptive training
mechanism allows the ANN to learn from its mistakes and correct its output
by adjusting its neurons. The adaptive training process enhances the per-
formance of the proposed module as additional training data are made
available.

As input parameters to the ANN, three factors are considered: 1) his-
torical MCP, 2) historical load, and 3) forecasted load. Historical infor-
mation refers to the previous day’s information, e.g., historical load
information includes the 24 hourly actual (known) loads of the previous
day. Similarly, forecasted load information includes the 24 hourly
forecasted loads of the day-ahead, i.e., the day for which the MCP is to
be forecasted. If all these three factors are considered as inputs to the
ANN, then the input layer has 72 neurons. The proposed adaptive training
mechanism ensures that the optimum number of hidden neurons is selec-
ted. The output layer of the ANN has 24 neurons, each one corresponding
to the MCP of one of the 24 hours of the day ahead.

Persistence Method

In order to evaluate the performance of the ANN, its forecasts are com-
pared with those of the persistence method. According to the persistence
method, the forecasted price, Price(d, h), for the hour h of the day-ahead
d is calculated as follows (Benini et al. 2002; Shahidehpour et al. 2002).

Priceðd;hÞ ¼ Loadðd;hÞ
Loadðd-1;hÞ � Priceðd-1;hÞ; ð1Þ

where Load(d, h) is the forecasted load for the hour h of the day-ahead d,
Load(d-1, h) is the actual load for the hour h of the previous day d-1, and
Price(d-1, h) is the actual price for the hour h of the previous day d-1.

Performance Evaluation

To assess the prediction capacity of the ANN model and the persistence
model, the mean absolute percentage error, MAPE, can be used.

MAPE ¼ 1

N
�
XN

i¼1

jActual PriceðiÞ � Forecast PriceðiÞj
Actual PriceðiÞ � 100%; ð2Þ

710 P. S. Georgilakis



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

 L
in

k 
C

on
so

rti
um

] A
t: 

11
:5

3 
14

 S
ep

te
m

be
r 2

00
7 

where N is the number of hours, Actual_Price(i) is the actual MCP for
the hour i, and Forecast_Price(i) is the forecasted MCP for the hour i
calculated by the model under consideration (persistence or ANN).

However, the MAPE, as defined in Eq. (2), is not suitable for price fore-
casting, since it causes problems for zero MCPs. To overcome this problem,
the following calculation for the MAPE is used throughout this article
(Shahidehpour et al. 2002; Yamin et al. 2004; Conejo et al. 2005b).

MAPE ¼ 1

N
�
XN

i¼1

jActual PriceðiÞ � Forecast PriceðiÞj
Average Price

� 100%; ð3Þ

where Average_Price is calculated as follows:

Average Price ¼ 1

N
�
XN

i¼1

Actual PriceðiÞ: ð4Þ

To assess the prediction capacity of the ANN model and the persistence
model, the MAPE is used, as defined in Eq. (3). The model (ANN or per-
sistence) with the lower MAPE on the test set is the most suitable for MCP
forecasting. In the sequel, if Eq. (3) is used to calculate the performance of
the day-ahead forecast, then the MAPE is called daily MAPE. While if Eq. (3)
is used to calculate the performance of the week-ahead forecast, then the
MAPE is called weekly MAPE.

Overview of the Proposed Methodology

The proposed methodology for MCP forecasting has three steps.

1. In the first step, the day-ahead load is predicted with the ANN method.
2. In the second step, the MCPs are forecasted with the persistence

method.
3. In the third step, the MCPs are forecasted with the ANN method.

The first step is to predict the day-ahead load, since this information is
needed by the persistence method and also it is expected to be an impor-
tant input parameter for the ANN model to predict the day-ahead MCPs.
This load forecasting is implemented with a multilayer feed-forward neural
network, which has 48 input neurons and 24 output neurons. The first 24
input neurons correspond to the 24 loads of the previous day (relatively to
the day ahead) and the remaining 24 neurons correspond to the 24 loads
of the same day (with the day ahead) of the previous week. The 24 output
neurons correspond to the 24 loads of the day ahead.

AI for Electricity Price Forecasting 711
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The second step is to forecast MCPs with the persistence method by
using Eq. (1) and to evaluate the performance of the persistence method
by using the MAPE definition of Eq. (3).

The third step is to obtain the MCP forecast by using the ANN model.
As reported in the next section ‘‘Case Study,’’ the best MCP forecasts are
obtained by using 72 input neurons, out of which the 24 are for the 24
MCPs of the previous day, the next 24 neurons are for the previous day
hourly loads, and the remaining 24 neurons correspond to the day-ahead
hourly loads. The ANN has 24 output neurons, corresponding to day-ahead
MCPs.

Figure 1 presents the proposed day-ahead electricity price forecasting
methodology (DAPFM). It should be noted that during the training pro-
cess, the inputs and outputs of both ANNs (for load and MCP forecasting,
within the first and the third step, respectively) are normalized, i.e., they are
divided by the maximum value, e.g., the maximum load and this is appli-
cable to the parameters Load(d-7, h), Load(d-1, h), and ANN_Load(d, h)
that are shown in Figure 1. It was found that this normalization contributes
in the accuracy of the proposed method irrespectively of the appearance of
price spikes in the MCP data series.

Figure 2 shows the proposed week-ahead electricity price forecasting
methodology (WAPFM) that uses the DAPFM. More specifically, in the
WAPFM:

. Load forecast for the d day (obtained from DAPFM) acts as the previous
day load for the dþ 1 day forecast, and

. Price forecast for the d day (obtained from DAPFM) acts as the previous
day price for the dþ 1 day forecast.

FIGURE 1 Day-ahead electricity price forecasting methodology: (a) detailed and (b) block diagram.

712 P. S. Georgilakis
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It should be noted that the WAPFM of Figure 2 can be easily modified
so as to be used for multiple days’ forecasts.

CASE STUDY

The proposed forecasting model has been applied to predict the
electricity prices of California power market. This section describes the
methodology to select the optimum ANN architecture that provides
the minimum daily mean absolute percentage error for the day-ahead elec-
tricity price forecasting problem. The selection of the optimum ANN archi-
tecture will define the number of training vectors, the number of input
neurons, the number of hidden layers, the number of neurons per hidden
layer, the training function, and the transfer function. The date of
29=3=1999 of the California power market has been selected to perform
this case study. Figure 3 presents the actual unconstrained MCP curve of
the California power market from 1=1=1999 to 31=3=1999 (UCEI 2006),
and Figure 4 shows the actual load curve for the same period.

Day-Ahead Load Forecast

According to the proposed methodology, the first step is to predict the
day-ahead load, i.e., the load for 29=3=1999. The day-ahead load forecast is
needed by the persistence method and also it is expected to be an impor-
tant input parameter for the ANN model to predict the day-ahead MCP.

FIGURE 2 Week-ahead electricity price forecasting methodology: (a) detailed and (b) block diagram.

AI for Electricity Price Forecasting 713
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After trial and error, it was found that the optimum day-ahead load
forecasting results are obtained with an ANN having the architecture
48-15-24, i.e., 48 input neurons: 15 neurons in the hidden layer and 24 out-
put neurons. For this ANN, the daily MAPE on the test set (24 hourly MCP
for 29=3=1999) is 1.07%. Figure 5 presents the ANN-based load forecast
versus the actual load for 29=3=1999.

Day-Ahead MCP Forecast Using Persistence Method

The second step is to forecast day-ahead MCP with the persistence
method. The results show that the daily MAPE on the test set
(29=3=1999) is 7.60%. The persistence forecast will be compared with
the ANN forecast for the day-ahead electricity price forecasting problem.

FIGURE 4 Actual load curve of California power market from 1=1=1999 to 31=3=1999.

FIGURE 3 Actual unconstrained MCP curve of California power market from 1=1=1999 to 31=3=1999.

714 P. S. Georgilakis
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Selection of Training and Transfer Function

In order to select the best training and transfer functions for the ANN
for the MCP forecasting problem, all possible combinations of the 17 differ-
ent training functions, as shown in Table 1, and the 11 different transfer
functions, as shown in Table 2, of the MATLAB neural network toolbox,
are considered, in order to reach the best result, i.e., the minimum daily
MAPE for the test set. Figure 6 presents the combinations of training

FIGURE 5 ANN-based day-ahead load forecast versus actual load for 29=3=1999.

TABLE 1 Training Functions (Demuth and Beale 2001)

Name Description

trainb Batch training with weight and bias learning rules
trainbfg Broyden, Fletcher, Goldfarb, and Shanno

quasi-Newton backpropagation
trainbr Bayesian regularization
trainc Cyclical order incremental update
traincgb Powell-Beale conjugate gradient backpropagation
traincgf Fletcher-Powell conjugate gradient backpropagation
traincgp Polak-Ribiere conjugate gradient backpropagation
traingd Gradient descent backpropagation
traingda Gradient descent with adaptive learning rate (lr)

backpropagation
traingdm Gradient descent with momentum backpropagation
traingdx Gradient descent with momentum & adaptive

lr backpropagation
trainlm Levenberg-Marquardt backpropagation
trainoss One step secant backpropagation
tarinr Random order incremental update
trainrp Resilient backpropagation
trains Sequential order incremental update
trainscg Scaled conjugate gradient backpropagation

AI for Electricity Price Forecasting 715
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and transfer functions that gave the best 10 results. Figure 6 shows that the
best training function is traincgb and the best transfer functions is logsig,
since this combination has the minimum daily MAPE, i.e., 5.49%. Traincgb
is a network training function that updates weight and bias values accord-
ing to the conjugate gradient back propagation with Powell-Beale restarts,
and logsig is the log sigmoid transfer function.

Selection of the Number of Training Vectors

In order to predict the 24 hourly MCPs for 29=3=1999, the appropriate
number of training vectors has to be selected. Eleven different sizes of

TABLE 2 Transfer Functions (Demuth and Beale 2001)

Name Description

compet Competitive transfer function
hardlim Hard limit transfer function
hardlims Symmetric hard limit transfer function
logsig Log sigmoid transfer function
poslin Positive linear transfer function
purelin Linear transfer function
radbas Radial basis transfer function
satlin Saturating linear transfer function
satlins Symmetric saturating linear transfer function
softmax Softmax transfer function
tansig Hyperbolic tangent sigmoid transfer function
tribas Triangular basis transfer function

FIGURE 6 Impact of training and transfer function on ANN-based daily mean absolute percentage
errors (MAPE) for 29=3=1999.

716 P. S. Georgilakis
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training vectors are considered, ranging from 14 days to 84 days. For
example, if 14 days are selected, then the training period is from
15=3=1999 to 28=3=1999, i.e., the two weeks before the forecast day
(29=3=1999), while if 84 days are selected, then the training period is from
4=1=1999 to 28=3=1999, i.e., the 12 weeks before the forecast day. Figure 7
presents the impact of the number of training vectors on the daily MAPE
for 29=3=1999. Figure 7 shows that the optimum number of training vec-
tors is 56 days, since this combination provides the minimum daily MAPE
on the test set (29=3=1999), i.e., 5.49%.

Selection of the Number of Input Parameters

Table 3 presents the impact of the number of input parameters on the
forecasting performance for the test set. It is concluded from Table 3 that
the minimum MAPE (optimum performance) for MCP forecasting is
obtained when using 72 input neurons that correspond to historical MCP
(24 input neurons for the 24 hourly electricity prices of the previous
day), historical load (24 input neurons for the 24 hourly loads of the

FIGURE 7 Impact of number of training vectors on ANN-based daily mean absolute percentage errors
(MAPE) for 29=3=1999.

TABLE 3 Impact of Input Parameters on Forecasting Performance

Inputs

Case Description Size
ANN MCP MAPE

(%)

1 Historical MCP 24 7.93
2 Historical MCP, historical load 48 6.22
3 Historical MCP, historical load,

forecasted load
72 5.49

AI for Electricity Price Forecasting 717
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previous day), and forecasted load (24 input neurons for the 24 hourly
loads of the day ahead) as inputs to the ANN, in line with the proposed
forecasting framework of Figure 1, since these inputs provide the minimum
daily MAPE on the test set, i.e., 5.49%.

Selection of the Number of Hidden Neurons

Two cases are considered regarding the number of hidden layers: one
or two hidden layers. Figure 8 presents the impact of the number of hidden
neurons on the daily MAPE of 29=3=1999 for ANN architecture with one
hidden layer. Based on Figure 8, the minimum daily MAPE is 5.33% and
it is achieved with eight neurons in the hidden layer. Figure 9 presents
the impact of the number of hidden neurons on the daily MAPE of
29=3=1999 for ANN with two hidden layers. Figure 9 shows that the opti-
mum ANN has 40 neurons in the first hidden layer and 20 neurons in
the second hidden layer and its MAPE is 5.03%, i.e., 5.63% lower that
MAPE of the best ANN architecture with one hidden layer. In conclusion,
the optimum ANN architecture for the day-ahead price forecasting prob-
lem has two layers, where the first hidden layer has 40 neurons and the
second hidden layer has 20 neurons.

Optimum ANN for Day-Ahead MCP Forecast

Table 4 presents the characteristics of the optimum ANN for day-ahead
electricity price forecasting. The architecture of the optimum ANN is
72-40-20-24, i.e., the ANN has 72 input neurons, 40 neurons in the first hid-
den layer, 20 neurons in the second hidden layer, and 24 neurons in the
output layer. The 24 output neurons correspond to the 24 hourly electricity

FIGURE 8 Impact of number of hidden neurons on ANN-based daily mean absolute percentage errors
(MAPE) for 29=3=1999.

718 P. S. Georgilakis
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prices of the day ahead. The 72 input neurons correspond to the 24 hourly
electricity prices of the previous day (historical MCP), the 24 hourly loads
of the previous day (historical load), and the 24 hourly loads of the day
ahead (forecasted load). The optimum number of training vectors is 56
days before the day ahead. For example, if the forecast day is the
29=3=1999, then the optimum training period is from 1=2=1999 to
28=3=1999, i.e., the eight weeks (56 days) before the forecast day. The opti-
mum training function is traincgb and the best transfer function is logsig.

In Figure 10, the MCP forecast of the optimum ANN versus the actual
MCP is shown for the test set (Monday 29=3=1999). The optimum ANN has
been trained using the parameters of Table 4. The daily MAPE on the test
set of the optimum ANN is 5.03%, i.e., 34% lower than the MAPE of the
persistence method.

FIGURE 9 Impact of the number of hidden neurons on the daily MAPE of 29=3=1999 for ANN archi-
tecture with two hidden layers (the x y notation on the vertical axis means that the first hidden layer has
x neurons and the second hidden layer has y neurons).

TABLE 4 Architecture of the Optimum ANN for Electricity Price
Forecasting

Parameter Value

Input neurons 72
Hidden layers 2
Neurons of first hidden layer 40
Neurons of second hidden layer 20
Number of training vectors (days) 56
Training function Traincgb
Transfer function Logsig

AI for Electricity Price Forecasting 719
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GENERALIZATION

This section is focused on the generalization of the proposed forecast-
ing model. The ANN-based electricity price forecasting model is applied to
predict the electricity prices of the California power market under many
different special cases, such as forecasting periods with price spikes, fore-
casting MCP of weekends, and week-ahead price forecasting during the
different seasons (winter, spring, summer, and fall) of the year.

Price Spikes

The generalization capability of the proposed model is checked during
periods of price spikes. Let us suppose that we have to forecast the day-
ahead electricity prices of Wednesday 14=7=1999. This is a very special
day with price spikes, since at hours 14:00, 15:00, 16:00 and 17:00, the
MCP is over 150 $=MWh.

Following the findings of Table 4, the number of training vectors is 56,
i.e., the training period is from 19=5=1999 to 13=7=1999 and the testing
period is 14=7=1999. Figure 11 presents the MCP curve of the California
power market from 19=5=1999 to 20=7=1999, where in purpose one week
MCPs are presented for the testing period (instead of one day MCPs) so
as the price spikes of the testing period are more visible. It should be noted
that in this period, there are 11 hours during which the MCP is zero, so that
is why MAPE is defined from Eq. (3) instead from Eq. (2).

In Figure 12, the MCP forecast of the optimum ANN versus the actual
MCP is shown for the test set (Wednesday 14=7=1999). The optimum ANN
has been trained using the parameters of Table 4. The daily MAPE on the
test set of the optimum ANN is 12.36%, while the MAPE of the persistence

FIGURE 10 ANN-based MCP forecast versus actual MCP for Monday 29=3=1999.

720 P. S. Georgilakis



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

 L
in

k 
C

on
so

rti
um

] A
t: 

11
:5

3 
14

 S
ep

te
m

be
r 2

00
7 

method for the same problem is 17.46%, i.e., the proposed ANN method
reduces the daily forecasting error by 29%. This result proves that the
proposed ANN model is appropriate for MCP forecasting for all the days
of the year, independently of the existence or not of price spikes.

Weekends

A second special case of the MCP forecasting problem is the day-ahead
MCP forecasting for weekends, which presents significant difficulties
(Wang and Ramsay 1998). The proposed methodology will be checked
for the weekend of Saturday 18=9=1999 and Sunday 19=9=1999 for the
California power market. In both cases (Saturday 18=9=1999 and Sunday
19=9=1999), the optimum ANN has been trained using the parameters of
Table 4.

FIGURE 12 ANN-based MCP forecast versus actual MCP for 14=7=1999 (day with price spikes).

FIGURE 11 Actual MCP curve from 19=5=1999 to 20=7=1999 (period with price spikes).
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In Figure 13, the MCP forecast of the ANN versus the actual MCP is shown
for Saturday 18=9=1999 (test set). The daily MAPE on the test set of the ANN is
5.61%, while the MAPE of the persistence method is 6.99%, i.e., the proposed
ANN method reduces the daily forecasting error by 20%.

In Figure 14, the MCP forecast of the ANN versus the actual MCP is
shown for Sunday 19=9=1999 (test set). The daily MAPE on the test set
of the ANN is 5.90%, while the MAPE of the persistence method is
9.52%, i.e., the proposed ANN method reduces the daily forecasting error
by 38% in comparison with persistence.

Week-Ahead

The proposed method of Figure 2 is used for week-ahead price forecast-
ing. The ANN is trained using the optimum parameters of Table 4. As the

FIGURE 13 ANN-based day-ahead MCP forecast versus actual MCP for Saturday 18=9=1999.

FIGURE 14 ANN-based day-ahead MCP forecast versus actual MCP for Sunday 19=9=1999.
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test set, the week from 30=3=1999 to 5=4=1999 is used, while the training
period includes the 56 days from 2=2=1999 to 29=3=1999.

Figure 15 presents the MCP forecast of the ANN versus the actual MCP
for the test set. The weekly MAPE on the test set of the ANN is 7.66%, while
the MAPE of the persistence method is 11.46%, i.e., the proposed ANN
method reduces the weekly forecasting error by 33%.

In order to investigate the impact of adaptive training, this week-ahead
forecasting problem is solved again, not using the methodology of Figure 2,
but using an adaptive training mechanism according to which seven ANNs
are trained for the seven days of the week ahead using each day the latest
available data, i.e., the data of the previous day. Figure 16 presents the MCP
forecast of the ANN versus the actual MCP for the test set when using the

FIGURE 15 ANN-based week-ahead MCP forecast versus actual MCP from 30=3=1999 to 5=4=1999.

FIGURE 16 Adaptive trained ANN-based week-ahead MCP forecast versus actual MCP from 30=3=1999
to 5=4=1999.
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adaptive training mechanism, instead of the methodology of Figure 2. The
weekly MAPE on the test set of the adaptively trained ANN is 6.05%, while
the MAPE of the persistence method is 11.46%, i.e., the adaptively trained
ANN method reduces the weekly forecasting error by 47% in comparison
with persistence method.

Table 5 presents the daily mean errors of the week from 30=3=1999 to
5=4=1999 by persistence, ANN, and adaptively trained ANN method. The
first conclusion from Table 5 is that day 7 (5=4=1999) of the week ahead
presents the highest daily mean errors. The second conclusion is that the
best performing model is the adaptively trained ANN and the worst is
the persistence method.

Seasons

The validity of the proposed week-ahead forecasting methodology of
Figure 2 is checked for four typical weeks of the four seasons, i.e., winter,
spring, summer, and fall. The winter week is from 6=12=1999 to
12=12=1999 (test set). The spring week is from 12=4=1999 to 18=4=1999.
The summer week is from 9=8=1999 to 15=8=1999. The fall week is from
6=9=1999 to 12=9=1999 (test set). In all four different cases, the ANN is
trained using the optimum parameters of Table 4.

TABLE 5 Daily Mean Errors of the Week from 30=3=1999 to 5=4=1999 by Persistence, ANN, and
Adaptive-Trained ANN

Method Day 1 (%) Day 2 (%) Day 3 (%) Day 4 (%) Day 5 (%) Day 6 (%) Day 7 (%)

Persistence 7.8 9.8 10.9 3.3 7.6 10.1 30.8
ANN 7.2 8.7 6.9 2.3 7.3 5.3 15.9
Adaptive trained

ANN
5.9 6.4 5.5 1.9 5.5 4.8 12.4

FIGURE 17 ANN-based week-ahead MCP forecast versus actual MCP for winter week (from 6=12=1999
to 12=12=1999).
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Figure 17 presents the MCP forecast of the ANN versus the actual MCP
for the winter week. The weekly MAPE on the test set of the ANN is 5.18%,
while the MAPE of the persistence method is 6.56%, i.e., the proposed
ANN method reduces the weekly forecasting error by 26%.

For the spring week, the weekly error of the ANN is 4.77%, while the
weekly error of the persistence method is 6.35%. Figure 18 presents the
MCP forecast of the ANN versus the actual MCP for the spring week.

For the summer week, the prediction behavior of the ANN technique is
less accurate than for the winter and spring weeks. More specifically, for the
summer week, the weekly error of the ANN is 6.87%, while the weekly error
of the persistence method is 9.51%. Figure 19 presents the MCP forecast of
the ANN versus the actual MCP for the summer week.

FIGURE 18 ANN-based week-ahead MCP forecast versus actual MCP for spring week (from 12=4=1999
to 18=4=1999).

FIGURE 19 ANN-based week-ahead MCP forecast versus actual MCP for summer week (from 9=8=1999
to 15=8=1999).
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The weekly error of the ANN for the fall week is closer to the weekly
error of the summer week. More specifically, for the fall week, the weekly
error of the ANN is 6.03%, while the weekly error of the persistence
method is 8.11%. Figure 20 presents the MCP forecast of the ANN versus
the actual MCP for the fall week.

CONCLUSIONS

The objective of this article is to develop a technique for the prediction
of the hourly market clearing price in a deregulated electricity market
environment using only the publicly available information. The proposed
method uses two ANNs: the first ANN predicts the hourly load and the
second ANN estimates the hourly market clearing price. The output of
the first ANN together with the previous day load and the previous day
market-clearing price are used as input to the second ANN. The inputs
and outputs of both ANNs are normalized during ANN training and this
normalization contributes in the accuracy of the proposed method. The
testing MAPE of the second ANN is compared with the testing MAPE of
a persistence method.

The methodology is applied to the California power market and it was
found that the ANN efficiently estimates the electricity prices, since the
ANN MAPE on the test set is on average 6%, which is 30% better than
the testing MAPE of the persistence method. In case of price spikes, the
ANN MAPE is on average 12%, which is also 30% better than the testing
MAPE of the persistence method. These results prove the efficiency and
practicality of the proposed ANN method for forecasting the market-
clearing price in deregulated electricity markets.

FIGURE 20 ANN-based week-ahead MCP forecast versus actual MCP for fall week (from 6=9=1999 to
12=9=1999).
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